Bayesian graphical model determination using decision theory
نویسندگان
چکیده
منابع مشابه
Inferring regulatory networks using a hierarchical Bayesian graphical Gaussian model
In this paper, we propose a new formalism based on graphical Gaussian model (GGM) to infer genetic regulatory networks. A hierarchical Bayesian prior for the precision matrix of the GGM is introduced to impose a bias toward sparse graph structure. We show that the MAP estimation of the undirected graph can be readily obtained by a variant of the well-known Lasso regression algorithm. Then we in...
متن کاملA Bayesian model decision support system: dryland salinity management application
Addressing environmental management problems at catchment scales requires an integrated modelling approach, in which key bio-physical and socio-economic drivers, processes and impacts are all considered. Development of Decision Support Systems (DSSs) for environmental management is rapidly progressing. This paper describes the integration of physical, ecological, and socio-economic components i...
متن کاملBayesian Decision Theory and Psychophysics
We argue that Bayesian decision theory provides a good theoretical framework for visual perception. Such a theory involves a likelihood function specifying how the scene generates the image(s), a prior assumption about the scene, and a decision rule to determine the scene interpretation. This is illustrated by describing Bayesian theories for individual visual cues and showing that perceptual b...
متن کاملDiagnostic testing: Model estimation and decision support using graphical models
Many agricultural decision problems can be treated within the framework of diagnostic testing. Observations are made sequentially in to order to classify a production unit as normal/unnormal, diseased/healthy etc. The decision problem is to find the optimal classification depending on the observations. The framework is well established and optimal use of such diagnostic testing schemes require ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2003
ISSN: 0047-259X
DOI: 10.1016/s0047-259x(02)00033-7